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1 Introduction .. _---- -

In this part, we prove that if a balanced bipartite graph G contains an even
wheel as an induced subgraph, then it has an extended star cutset. The
proof is divided into two parts, treated in $ections 2 and 3 respectively. In
Section 2, we give properties of the stropgiy adjacent nodes to even wheels.
In particular, for an even wheel (W, vI with the smallest number of spokes
and, subject to this, the smallest n*(mber of nodes, we prove that at least
two nodes of W, say wtvand w2,-are adjacent to all nodes with more than
two neighbors in W. In Section 3, we prove that, for the above choice of W
and an appropriate choice of v, the nodes with more than two neighbors in
W together with the nodes of N(v) form an extended star cutset of G.

2 Strongly Adjacent Nodes to an Even Wheel

Let (W, v) be an even wheel of a balanced bipartite graph G. Throughout
this part, we assume that v E Vr. We denote by Nw(v) the set of nodes of W
adjacent to v. We recaal from Part I that a subpath of W having two nodes
of Nw(v) as endnodes and only nodes of V(W)\Nw(v) as intermediate nodes
is called a sector of (W, v). Two sectors are adjacent if they have a common
endnode and two nodes of Nw(v) are consecutive if they are the endnodes of
some sector. Finally, we paint the nodes of V(W)\Nw(v) with two colors,
say blue and green, in such a way that two nodes of V(W)\Nw(v) have the
same color if they are in the same sector, and have distinct colors if they are
in adjacent sectors. The nodes of Nw(v) are left unpainted.

The goal of this section is to prove the following two theorems about the
strongly adjacent nodes to W.

Theorem 2.1 Let u E Vc\N(v) be a node with neighbors in at least two
distinct sectors of W. Then u has exactly two neighbors in W, say uj and
Uk. Furthermore, the nodes 1 j,Uk bclonig to sectors of the same color and at
least one of Uj,Uk is not adjacent to uripainted nodes.



Define the set of nodes:

A(W, v) = {u E VrI No sector of (W, v) entirely contains the set Nw(u)
and INw(v) n Nw(u) > 2}.

Theorem 2.2 If a balanced bipartite graph contains an even wheel, then it
contains an even wheel (W, v) such that

n Nw(u)I > 2.

u E A(W,v)

Proof of Theorem 2.1: Assume u has neighbors in at least three dif-
ferent sectors, say Si, Si, Sk. If none of these sectors is adjacent to the other
two, then there exist three unpainted nodes vi, vj, vk, such that vi E V(Si) \
(V(Sj)UV(Sk)), vj E V(Sj) \ (V(S,)uV(Sk)), Vk E V(Sk) \ (V(S,) U V(Sj)).
This implies the existence of a 3PC(u, v), where each of the nodes vi, vj, vk

belongs to a distinct path of the 3-path configuration, see Figure 1. Now
assume some sector is adjacent to the other two, say Sj is adjacent to both
Si and Sk. Then, with the notation of Figure 2, there is a 3PC(u, v) unless
node u has a neighbor u, in Si adjacent to vi and a neighbor uk in Sk adjacent
to Vk. When this is the case, the nodes u, ui, vi, V, vk, Uk induce a 6-hole.

So u has neighbors in at most two different sectors of the wheel, say Sj and
Sk. If these two sectors are adjacent, then denote by vj and Vk the endnodes
such that vi E V(Sj) \ V(Sk) and vk E V(Sk) \ V(Sj) respectively. Among
the nodes of N(u) fn V(Sj), let uj be the one such that the ujvj-subpath of
Sj is shortest. Similarly Uk E N(u) n V(Sk) has the shortest ukvk-subpath in
Sk. Let P' be the ujuk-subpath of W containing the common endnode of Sj
and Sk. Now, consider the hole It" obtained from W by replacing P' by the
path UjU, k. The wheel (W',v) is an odd wheel. So the sectors S. and Sk
are not adjacent.

If u has three neighbors or more on ITW, say two or more in S, and at least
one in Sk, then denote by vj and z,-i the endnodes of q, and by vk one of
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the endnodes of Sk. There exists a 3PC(u, v) where each of the nodes vj,
vi- 1, and Vk belongs to a different path. Therefore u has only two neighbors
in W, say uj E V(Sj) and Uk E V(Sk). Let C, and C2 be the holes formed
by the node u and the two ujuk-subpaths of W, respectively. In order for
both (C1, v) and (C 2, v) to be even wheels, the sectors Sj and Sk must be
of the same color. Finally, assume that uj is adjacent to an endnode of Sj,
say v1 , and that Uk is adjacent to an endnode of Sk, say Vk. Then the nodes
u, V1 uj, vj, Uk, Vk induce a 6-hole. 0

Before proving Theorem 2.2, we need the following results about the
structure of a strongly adjacent node u E Vr to W, relative to a chosen
center v of the wheel.

Type 1: There exists a sector of (Hv) containing all the nodes of Nw(u).

Type 2: Node u is not of Type 1 and all its neighbors in W are unpainted.
Note that, in particular, the center v of the wheel is of Type 2.

Type 3: Node u is not of Types 1 or 2 and all its painted neighbors in W"
have the same color.

Type 4: Node u has painted neighbors of both colors.

We first study the structure of the Type 4 nodes.

Lemma 2.3 Let u be a Type 4 strongly adjacent node to an even wheu
(W, v). Let s and t be a green and a blue neighbor of u, respectively. Eacr' of
the st-subpaths of W contains at least one unpainted neighbor of u. Jence
u E A(W, v).

Proof: Assume that one of the two st-subpaths of H contains no un-
painted neighbor of u. Let Q be this subpath. Let P be e s't'-subpath of
Q such that s' is a green neighbor of u, t' is a blue nelghbor of u, and P
contains no other painted neighbor of it. P contains an odd number of un-
painted nodes, none of which are adjacent to u. If his number is three or
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more, then v is the center of an odd wheel with hole induced by the nodes
of P and u.

So P contains exactly one neighbor of v, say x. Consider the cycle C
with unique chord vx induced by v and the two sectors of W having x as an
endnodc. Node u is a strongly adjacent node relative to C and therefore must
be of one of the three types of Theorem 3.4(I). It is not of Type 1 [3.4(I)] since
s' and t' are in different sectors. It is not of Type 2[3.4(I)] either since u is not
adjacent to v or x. Since s' and t' are painted, they are not adjacent to v and
since s', t', x E VC, the nodes s' and t' are not adjacent to x either. So the node
u is not of Type 3[3.4(I)] relative to C. This contradicts the balancedness
assumption. Therefore Q must contain an unpainted node adjacent to u. 0

Lemma 2.4 If a node of V', strongly adjacent to W, has a unique neighbor
w in a sector, then node w is unpainted.

Proof: Assume that node u has a unique neighbor w in sector Si and
that w is painted. Let vi and vi-1 be the endnodes of Si. Since node u is
strongly adjacent to W, it has at least one neighbor in the path induced by
V(W) \ V(Si). Choose u* among the nodes of Nw(u) \ V(S,) and choose
v* among the nodes of Nw(v) \ V(Si) in such a way that the u'v*-subpath
of W not containing Si is shortest. Note that u* E VC, hence u" cannot be
adjacent to v, or vi- 1. This implies a 3PC(w, v), where each of the nodes v,,
vi- 1 and v" belongs to a different path. 0

We now consider a wheel (W, ) of G with the following property.

Definition 2.5 A hole W is small if there exist no nodes x,y,z E Vr,
strongly adjacent to W, such that the graph induced by V(W) U {x,y,z}
contains a wheel (W', u) where W' is a shorter hole than W and u is one of
the nodes x, y or z. A wheel (1, v) is small if W is small.

For example, the shortest hole 14 for which there exists a node v E
V\ V(W) with more than two neighbors in W, is a small hole. The following
remarks are an immediate consequence of Definition 2.5.
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Remark 2.6 Every strongly adjacent node to W in V' which does not belong
to N(v) has at most two neighbors in each sector of (W,v).

Remark 2.7 Every Type I node u has exactly two neighbors in W, say u'
and u", and there is a painted node in W which is adjacent to both u' and

Remark 2.8 For every Type 2 node u, Nw(u) = Nw(v).

Remark 2.9 Every Type 3 node u has exactly two neighbors either in each
green sector or in each blue sector. Hence, INw(u)l = INw(v)l.

Lemma 2.10 Let (W,v) be a small even wheel. Every Type 4 node u satisfies

INw(u)l = INw(v)l.

Proof: By Lemma 2.3, we have that INw(u) n Nw(v)l > 2. Let P
be a subpath of W with endnodes in Nw(u) n Nw(v), say x and y but no
intermediate node in Nw(u) n Nw(v). The nodes x and y are said to be
consecutive nodes of Nw(u) n Nw(v) in W. Now Lemma 2.3 implies that
V(P) n N(u) does not contain nodes of distinct colors. Assume w.l.o.g.
that V(P) n N(u) contains no green node. Then Definition 2.5 implies that
u has exactly two neighbors in every blue sector of P. This shows that
INw(u) n V(P)J = INw(v) n V(P)J. By repeating the argument between
any pair of consecutive nodes of Ntw(u) n Nw(v) in W, we get the equality
claimed in the lemma. 1:

Lemma 2.11 Let (W,v) be a small even wheel and let u be a Type 4 node
having painted neighbors in two adjacent sectors, say Si, Si+1 . Then every
Type 2, 3 or 4 node is adjacent to the common endnode of Si, Si+,.

Proof: We use the notation of Figure 3. Node vi belongs to N(u), as
a consequence of Lemma 2.3. Assume by contradiction that there exists a
node w, of Type 2, 3 or 4. which is not adjacent to v,.
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By Definition 2.5, node w has a painted neighbor in Si or Si+. If w has
a painted neighbor in both Si and Si+l, then Lemma 2.3 implies that w is
adjacent to vi. Therefore we assume w.l.o.g. that w has a painted neighbor
in Si but no painted neighbor in Si+,. Definition 2.5 implies that w has a
neighbor in Si+2. Let wi be the painted neighbor of w in Si which is closest to
ui and let wi 2 be the neighbor of wv in Si+2 which is closest to vi+1 . (Possibly
wi = ui or w,+ 2 = vi+1 ). There is a 3PC(vi+i, u):

P1 = Vi+i, v, Vi, U;

P2 = vi+,, the vi+1wi+ 2-subpath of Si+ 2 , w, wi, the wiui-subpath of Si, u.

P3 = the vi+lui+i-subpath of Si+1,u. 0D

Lemma 2.12 Let (W,v) be a small even wheel and assume that a Type 4
node exists. Then A(W, v) contains all Type 2, 3 and 4 nodes and

n l Nw(u) > 2.
u E A(01, v)

Proof: Let z be a Type 4 node, having painted neighbors z, and zj of
distinct colors in (Wt, v). We show that each of the two uiu,-subpaths of W
contains an intermediate node in fInL,(wV) Nw (u).
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Let P be one of the two uiuj-subpath of W and let X be the set of Type
2, 3, 4 nodes in (W, v). Pick a pair of nodes x, y E X such that y is of
Type 4 relative to (W, x) and y has two painted neighbors yl, y, in P of
distinct colors in (W, x). Furthermore nodes x and y are chosen such that the
length of the yly-subpath Pm,,, of P is shortest. If P~yy contains exactly
one unpainted node of (W, x), then the proof follows from Lemma 2.11. Now
consider the case where Pim contains more than one unpainted neighbor.
This number is odd, say 2k + 1, and let x* be the k + 1" unpainted node in

Py,Y, starting from either end. We show that every Type 2, 3, 4 node with
respect to (W, x) is adjacent to x.

Assume not. Then there exists a node w of Type 3 or 4 that is not
adjacent to x*. Let S1 and S, be the sectors of (W,x) containing y, and ym
respectively and having x1, x1+1 and xm, xm+1 as endnodes, see Figure 4.

Let P-X-+, be the XJXm+-sUbpath of W containing x*. Then by as-
sumption, in P,+,, node u, has either two neighbors in every green sector
of (Wx) or two neighbors in every blue sector. Assume w.l.o.g. that the
second alternative holds and that .51 is painted blue. Let Xk be the other
endnode of the blue sector having .' as endnode. In this sector, let w* be
the neighbor of w closest to x" and wk the one closest to Xk.

If t, has at least one unpainted neighbor in S1, then let w1 be such a
neighbor and assume w.l.o.g. that the yivw-subpath P,, of S does not

S
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Figure 5: Weakly nested nodes u and w.

contain another neighbor of w or y. Then the following three paths induce a
3PC(x*, w).

P1 = x',y, yPV 1 ,ww; P2 = X,X,xk,P kW,,Wk,W; P3 =x*,P .,w*,w.

Hence w is adjacent to xt and x 1+1. In the wheel (Ww), node y is of
Type 4, having neighbors x* and yl in sectors of (W, w) of opposite colors.
But now the x*yl-subpath of P is shorter than P,,,, a contradiction to the
choice of the pair x, y. 0

We now examine the structure of the Type 3 nodes and discuss how they

relate to the other strongly adjacent nodes in VT . We continue to assume
that the even wheel (W, v) is small.

Let u and w be two nodes each having more than two neighbors in W.
We say that u and w are weakly nested if, in every sector S of (W, v) where
each of the nodes u and w has two neighbors, either the neighbors of w both
belong to the path connecting the two neighbors of u, or vice versa, the
neighbors of u both belong to the path connecting the two neighbors of w.
See Figure 5 for an example. We say that a family of nodes has the weak
nestedness property if every pairi u, it, of nodes in the family is weakly nested.
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Lemma 2.13 Let (Wv) be a small even wheel. Then the weak nestedness
property holds for the family comprised of the Type 2, 3 and 4 nodes.

Proof: It follows from the definition that v is weakly nested with all
other nodes. Assume that two nodes i, w $ v, each having more than two
neighbors in W, are not weakly nested. There are two ways in which this
could happen.

Case 1: There is a sector S where the neighbors of u, say ul and U2, and the
neighbors of w, say w1 and IV2, appear in the order u1 , w, U 2, w 2 where
ul w 1 , u2 0 w, and U2 € u' 2, see Figure 6. In the wheel (W, u), node
w has a unique neighbor, namely wl, in one sector and w, is painted.
This contradicts Lemma 2.4.

Case 2: There is a sector Si where the neighbors of u, say ul and u2, and
the neighbors of w, say w, and w2, appear in the order u1 ,u 2, w 1 ,w2

(possibly u 2 = wl), see Figure 7. With the notation of Figure 7, let Ua3
be the neighbor of u in (V(S 1, ) \ {v,+j}) U V(Si+2 ) which is closest
to vi+,, in the path defined by Sj+j and Si+ 2. Similarly, let w3 be the
neighbor of w in (V(Si+l) \ { v,+1}) U V(Si+2) closest to t,,+,. The nodes
u3 and w3 exist as a consequence of Definition 2.5. Since w is not
adjacent to vi+1 , it follows from Lemma 2.3 that W3 E V(S+ 2). As a
consequence of Definition 2.5, node u can have at most two neighbors
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in a sector of (W,w). This implies that u3 does not belong to the
wIw 3-subpath of W containing Sj+j. Define the hole W' as follows. It
contains the edge (u, u 2), the 712vi-subpath of S, the edges viv, vvi+2,
the vi+U3u-subpatlh of Si+2 and finally the edge u3u. W' is shorter than
W and node w has at least three neighbors in W, contradicting the
assumption that (W, v) is small. 0l

Let u, w E Vr each have more than two neighbors in W. We say that
u >- w relative to ihe wheel (W,v) if, in every sector S of (W,v) where each
of the nodes u and w has two neighbors, the neighbors of w both belong to
the path connecting the two neighbors of u in S. We say that a family of
nodes has the nestedness property if. for every pair u, w of such nodes, either
u >- w or w >- u or both.

Lemma 2.14 Let (W, v) be a small cvzen wheel. If neither w >- u nor u >- w
holds relative to (W, v), then w is a Type 4 node relative to the wheel (W, u)
and u is Type 4 relative to (I'. w).

Proof: By Lemma 2.13, nodes u and w are weakly nested. This implies
that, if neither w >- ? nor u >- u holds, then there exist two sectors Si, Sj
in which the nodes u, w have their neighbors as in Figure 8 where, possibly,
either ui, = wi, or ui,2 = iL, ' but not b)oth, and, possibly, either Uk, = Wk,
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or uk2 = wk2 but not both. However, since the u,1u*2-subpath of W/ (uku 2 2-
subpath) not containing ui2 (u,) have an even number of nodes in Nw(v),
it follows that, in each set {wk,wk2 }, {w,,w,2 } at least one of the nodes is
painted in (W, u) and the colors are distinct. The proof for u and (W, w) is
identical. V

We are now ready to prove the main result of this section.

Proof of Theorem 2.2: If there exists a small even wheel having at least
one Type 4 node, then the result holds as a consequence of Lemma 2.12. So,
we now consider the case where every small even wheel has no Type 4 node.

Let (W, v) be a small even wheel and let B denote the set of nodes of V

with more than two neighbors in W. Lemma 2.14 shows that the nestedness
property holds for the family B. Consider the family f comprising the
Type 2 nodes and Type 3 nodes that have painted neighbors in blue sectors.
The definition of the relation t implies that, if x,y,z E F satisfy x l- y
and y z, then we also have l- z, i.e. the relation - is transitive in the

family F. (This follows from the observations that a contradiction to x' > z
must occur in a blue sector and that y also has two neighbors in that sector).
Therefore, we can find u" G FT such that a'>- u" for every a' E FT. Now,
consider the wheel (W,u). Note that (evruy)is small and, w.l.o.g., its blue
sectors are subpaths of the blue sectors of (W,v). By our choice of u, no
node of B has a blue neighbor in (l',t). By Lemma 2.14, B is a nested

12



family relative to (W, u*). Since all Type 3 nodes relative to (W,u*) have
green neighbors, the relation >- is transitive on B. Recall that the definition
of nestedness also implies that, for x, y E B either y >- x or x >- y or both.
So we have a total transitive order on B.

For i > 1 integer, let Ai(W,u*) be the set of Type 2 and 3 nodes w,
strongly adjacent to (W,u*) such that INw(w) n Nw(u) > i. The total
transitive order of the relation >- implies that I nEA,(W,,.) Nw(u)l > i. Note
that the set A(W, u*) of Theorem 2.2 coincides with A 2(W, u*). Hence The-
orem 2.2 holds for the wheel (14, it*) and the proof is complete. 0

Since the wheels used in the proof of Theorem 2.2 are small, we make the
following observation.

Remark 2.15 There exists a small even wheel (Wv) that satisfies Theo-
rem 2.2.

3 An Extended Star Cutset Theorem for Small

Even Wheels

In this section, we prove the following key result concerning the decomposi-
tion of balanced bipartite graphs that contain an even wheel.

Theorem 3.1 Let (W,v) be a small even wheel in a balanced bipartite graph.
Then every path connecting a blue node to a green node of (W, v) contains a
node in N(v) U A(W, v).

Corollary 3.2 A balanced bipartit graph containing an even wheel has an
extended star cutset.

Proof: There exists a small even wheel (11/, v) such that nu1EA(w,,)NW(u) $
0, as a consequence of Theorem 2.2 and Remark 2.15. Now, for any fi, f2 E

13



nfEA(w,)Nw(u), Theorem 3.1 implies that N(v) U (N(fl) n N(f 2)) is an
extended star cutset. 0

A bipartite graph is linear if it contains no cycle of length 4. Linear
balanced bipartite graphs have been studied by Conforti and Rao [11], who
have proven the following star cutset theorem. This theorem can now be
deduced from Theorem 3.1.

Corollary 3.3 A linear balanced bipartite graph containing an even wheel
has a star cutset.

Proof: Let (W, v) be an even wheel in a linear balanced bipartite graph.
Then we have A(Wv) = {v}. Otherwise, let u be some other node in
A(W,v) and let fi and f2 be two neighbors of u in Nw . The nodes u, v,

fi and f 2 induce a cycle of length 4, contradicting the linearity assumption.
Now let (W, v) be a small even wheel. It follows from Theorem 3.1 that N(v)
is a star cutset. 0

In the proof of Theorem 3.1, we make use of the following lemma, which
appears in [11].

Lemma 3.4 Let (W, v) be an even wheel in a balanced bipartite graph G and
let P be a chordless path with nodes in V(G) \ (V(W) U N(v)) such that any
x E V(P) is adjacent to at most one node Nw(v) and to no painted node of
W. Then at most two nodes of Nw(i,) have at least one neighbor in P.

Proof: Assume the lemma is not true and let P' = yi, Y2,... , Y, be a
shortest subpath of P with the property that three distinct nodes of Nw(v)
have at least one neighbor in P'. Denote by vi, v2, v3 the three nodes of
Nw(v) with at least one neighbor in P'. We can assume w.l.o.g. that v, is
adjacent to yl and no other node of P', v3 is adjacent to y, and no other node
of P' and that v2 is adjacent to some intermediate nodes of P'. Let yi and y.
be such nodes, such that the yiy,-sulIpath P , Y, of P' and the yjyn-subpath
PV, , of P' ar c as short as possible.
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Let Pj be the vivj-subpath of W not containing Vk, for i,j,k E {1,2,3}
and i -€ J $ k. Let H 12 be the hole induced by the nodes in P12 and in
H13 the hole iiduced by the nodes in P13 and in P' and let H 23 be the hole
induced by the nodes in P23 and in P1,. Since (W, v) is an even wheel, then
one of the paths P1 contains an odd number of intermediate nodes in N(v).
Let P12 be this path. Then (Hi2 , v) is an odd wheel. 0

Proof of Theorem 3.1: If the theorem does not hold for (Wv) , let
P = s*, s,... , t, t be a shortest path connecting nodes of 4I with distinct
colors, and containing no node of N(v) U A(W, v). W.l.o.g. assume that
v E V', s" is green and tC is blue. The following possibilities can occur for
nodes s and t.

(a) Node s (or t) has only one neighbor in W, namely s" (t" respectively),

(b) Node s (or t) belongs to V: \ N(v), is strongly adjacent to W, but all
its neighbors are in the same sector of (W, v),

(c) Node s (or t) belongs to 1/' \ N(v) and has exactly two neighbors in
(W, v), one in sector S, and one in sector Sj, i - j, where Si and Sj
have the same color,

(d) Node s (or t) belongs to Vr \ A(H,"v) and is a Type 1 node,

(e) Node s (or t) belongs to 1V, \ A( 11, v) and is a Type 3 node with at most
one neighbor in Nw(v).

It follows from Theorem 2.1 and Lemma 2.3 that no other possibility can
occur for the node s (or t).

Next, we show that we can dispose of the possibilities (b) and (d) by
modifying the wheel (Wv) and the path P.

Claim 1: There exists a wheel (1', v) and a path P' = ss',..., t', t'
connecting nodes of distinct colors in (11', v), containing no node of N(v) U
A(W', v), such that the nodes s' and 1' satisfy one of the properties (a), (c)
or (e) above and, furthermore, tlic ,iodes of V(P') \ {s', s',t',t"'} have at
most one neighbor in W'.

15



Proof: First, assume that some node u of V(P)\ {s*,s,t,t*} has at least
two neighbors in W. These neighbors are unpainted, otherwise a shorter path
P would exist. All Type 2 nodes are in A(Wv), so u must be of Type 1.
Denote by vi and vi- 1 the nodes of W adjacent to u and by Si the vivi 1-
sector of (W, v)A ssume w.l.o.g. that Si is a blue sector. Construct W' from
W by replacing the sector Si by the sector vi- 1 , u, vi and let P' be the s'u-
subpath of P. Note that A(W', v) = A(W, v). Therefore, P' connects sectors
of distinct colors in (W',v) and contains no node of N(v) U A(W',v). In P',
the node t' adjacent to u is different from s (if s = t', then this node is Type 4
relative to (W', v) but all Type 4 nodes belong to A(W', v)). Note also that
P' is shorter than P. So by repeating the above procedure, we can dispose
of all the nodes of V(P) \ {s*, s, t, t'} with at least two neighbors in W. In
the remainder, we assume w.l.o.g. that the nodes of V(P) \ {s*, s, t, t*} have
at most one neighbor in W and, if this neighbor exists, it is unpainted.

Assume that s satisfies property (b) or (d) and let Si be the sector con-
taining s*. Denote by vi and vi-I the endnodes of Si and by si and si-1 the
neighbors of s in Si that are closest to vi and vi-I respectively. Let (W', v)
be the wheel obtained from (14,v) by substituting the si-1 st-subpath of Si
with si- 1,s, si and let P' be the subpath obtained from P by removing the
node s*, namely P' = s,s',.... t,U'. Since A(W',v) = A(W,v), the path P'
connects two sectors of (W', v) with distinct colors and contains no node of
N(v) U A(W', v). Note that s' = t cannot occur, since this node would be
Type 4 relative to (W', v), a contradiction to the fact that P' contains no
node of A(W', v). Therefore, ,s' has at most two neighbors in W'. If s' does
have two neighbors, it must be of Type 1 relative to (W', v), i.e. Property
(d) holds. In this case the above procedure can be repeated and P' can be
shortened again. The proof of Claim 1 is now complete

As a consequence of this claim, we can assume w.l.o.g. that (W, v) and
P = s*, s,... , t, t* have the following properties, in addition to those already
stated at the beginning of the proof: s and t satisfy Properties (a), (c) or (e)
and the nodes of V(P) \ {s*,s,I,t } have at most one neighbor in W.

Claim 2: Let s be a Type 3 nodc.
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Figure 9:

(i) If Nw(s) n Nw(v) = 0, then no node of V(P) \ {s*,s,t,t*} is adjacent
to a node of W.

(ii) If Nw(s)nNw(v) = {f}, then no node of V(P)\ {s*,s,t,t*} is adjacent
to a node of W \ {f}.

Proof: Assume not and let i be the node of V(P) \ {s*,s,t,t*} which
is closest to s in P and adjacent to a node of W (Case (i)) or of W \ {f}
(Case (ii)). By Claim 1, node u can only be adjacent to one node of W and
this node is unpainted. Let x E Nw(v) be this node, see Figure 9.

By Remark 2.9, node s has exactly two neighbors in each green sector
of (W, v). By Property (e), s has at most one unpainted neighbor in W.
Let S, be the green sector having x as endnode and let si be the neighbor
of s closest to x in S,. Let S. be a green sector distinct from Si, say with
endnodes v, and z,-, and let .sj and 5,.i be the neighbors of s in S., closest
to vj and v,- 1 respectively. Assume w.l.o.g. that sj is painted. Then x E Vc
and s E Vr are connected by a 3PC(.r, s):

P1 = x, u, the us-subpath of P. s

P2 = x, the xs,-subpath of S,

P3 = x, v, v, the vjs,-subpath of S, s.

17
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This completes the proof of Claim 2.

A similar statement to Claim 2 holds when t is of Type 3.

Claim 3: Neither node s nor nods t is of Type ..

Proof: Assume s is a Type 3 node. By' Remark 2.9, node s has exactly
two neighbors in each green sector of (17, v). Furthermore, .s has at most
one unpainted neighbor, say f. Let 8, be the blue sector containing t. We
choose an adjacent green sector ,q+ as follows, see Figure 10.

(i) If S, has node f as an endode, let S+1 be the green sector, adjacent to
8,, which does not contain f as eudnode.

18



(ii) If Si does not have node f as an endnode but one of the adjacent green
sectors has f as endnode, let S+± be the green sector having f as
endnode.

(iii) If neither of the sectors adjacent to Si has f as an endnode (or if f does
not exist), choose Si+I arbitrarily to be one of the sectors adjacent to
Si.

Let vi be the common endnode to Si and Si+i and let s1+i be the neighbor
of s in Si+l which is closest to vi. Note that s,+l is a painted node since vi $ f.
Finally, let S, be the green sector, distinct from Si+l and adjacent to Si. Let
vj -$ f be an endnode of S, which is not adjacent to t and let v,_ 1 be the
other endnode of ,j. (Note that such a choice of vj is always possible due
to the above conditions (i)-(iii)). Let s. be the neighbor of s in S. which is
closest to v.

Case 1: Node t is not adjacent to vI.

Now there is a 3PC(v,, s):

P = v,, the vit'-subpath of S,, the tUs-subpath of P, s.

P2 = v,, the vsi+I-subpath of , s.

P3 = vi,V, v,, the Vs,-sul))ath of S, s.

Case 2: Node t is adjacent to z,.

This implies that t is a Type 3 node and that no node of V(P) \
{s*, s, t, t*} has a neighbor in Nw(v), else s or t contradicts Claim 2.
Let P" be the st-subpath of P. Then there is a 3PC(v,,s).

P, = vj, t, P*,s.

P2 = v, the vs. subpath of ,.

In Case (i) or (ii), P3 is chosen as follows:

P-1 = v,,v,f,s.
In Case (iii), let sj-l be the neighbor of s closest to v,_1 in Si.
Then P3 is chosen as follows:

1 9



P3 = v.,v,vj-i, the vj 1s,._1-subpath of Sj, s.

This completes the proof of Claim 3.

Claim 4: If s satisfies Property (c), then there exists a green sector S with
the property that each endnode of S is adjacent to at least one node in the
set V(P) \ {s*, s, t, t*}.

Proof: Since node s satisfies Property (c), Theorem 2.1 implies that there
exists a Si, say with endnodes vi and vi-, such that the unique neighbor si of
s in Si is not adjacent to vi, vi-. Let 5', be the sector containing the second
neighbor s, of s and let v., vj-I be the endnodes of Sj. By Lemma 3.4, at
most two nodes of Nw(v) are adjacent to V(P) \ {s*,s,t,t*}.

Case 1: No node of Nw(v) is adjacent to V(P) \ {s*,s,t,t*}.

Let Sk be the sector containing t* and let vk $ v,, v,-I be an endnode
of Sk. We can assume w.l.o.g. that vi J vk and that vj is not adjacent
to t*. Then, there is a 3PC(v, s):

P1 = V, Vk, the Vkt'-subpath of Sk, P.

P2 = v, v,, the visi-subpath of S,, s.

P3 = v,v, the vjsj-subpath of '1, s.

Case 2: Exactly one node of Nji.(v), say v, is adjacent to V(P)\{s*,s,t,t*}.

Starting from s, let u" be the first neighbor of v, encountered on P.

Case 2.1: vI 1  vpv) .

Assume w.l.o.g. that vI i v,. Then there is a 3PC(v, s):

P1 = v, v, u*, the us-subpath of P, s,

P2 and P- are the same as in Case 1.

Case 2.2: v, = v.-I and t satisfies Property (a).

Then, the 3-path configuration of Case 1 is still valid, except if t* is
adjacent to v. So, we consider the case where t is adjacent to v.. Let
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Q be the vj-it'-subpath of W not containing vj. Let v* be the neighbor
of v3_1 which is closest to t' on P and let P* be the t*v*-subpath of P.
Let H be the hole formed by Q, P* and the edge vjlv'). Then (H,v)
is an odd wheel.

Case 2.3: v, = vj- 1 and t satisfies Property (c).

As a consequence of Theorem 2.1, one of the neighbors of t in W is
adjacent to no node of Nw(v). Choose t to be such a neighbor of t.
Then the argument of Case 1 still holds,

Case 3: Two nodes of Nw(v) are adjacent to V(P) \ {s*,s,t,t*}.

Starting from s, let u* be the first node of P having a neighbor in
Nw(v), say vi E Nw(v). If v j v,-,, then the argument of Case 2.1
still holds. So, assume w.l.o.g. that vt = v,_ 1. Let vp be the other node
of Nw(v) with neighbors in V(P) \ {s*,s,t,t*}. Starting from s, let
w* be the first neighbor of vp encountered on P. Assume w.l.o.g. that
vi 0 v. If vp 0 vj, then there is 3PC(v,s):

P1 = v,vp, w*, the w's-subpath of P, s.

P2 and P3 are as in Case 1.

Hence vp and v, are the endnodes of the green sector Si and the claim
follows.

If both s and t satisfy Property (c), then Claim 4 implies that at least
three nodes of Nw(v), namely the endnodes of two sectors of distinct colors,
have neighbors in V(P) \ {s*, s, t, t*}. This contradicts Lemma 3.4 asserting
that at most two nodes of Nw(v) can have neighbors in V(P) \ {s, s, t, t*}.
So we can assume w.l.o.g. that I satisfies Property (a). The next claim shows
that this cannot occur either, proving the theorem.

Claim 5: Node I cannot satisfy Property (a).

Proof: Assume t satisfies Property (a) and let vj, v.- 1 be the endnodes
of the sector 5, containing t. First, we show that at least one node of Nw(v)
has a neighbor in V(P) \ {s% s, t, t}. Assume not. Then Claim 4 implies
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that node s satisfies Property (a). Let P, and P2 be the two s't*-subpaths
of W. Let H1 (H 2) be the hole formed by P and P1 (P 2 respectively). Both
H1 and H2 have an odd number of neighbors of v and, for at least one of the
holes this number is greater than one. So either (H1 , v) or (H 2 , v) is an odd
wheel.

When traversing P from t, let u* be the first node encountered which
has a neighbor vi in Nw(v). We show that v, = vj or vj-. Assume not
and let P and P2 be the t'vj-subpaths of W and let P* be the t*u*-subpath
of P. Let H1, H 2 be the two holes formed by P*, the edge u'vj and P 1, P2

respectively. Note that v has an odd number of neighbors in one of these
two holes. This odd number is greater than one, since v, =it vj, vj-.. Hence,
either (H 1, v) or (H 2, v) is an odd wheel. So v, is an endnode of Sj. Assume
w.l.o.g. that v, = vj.

If v, is the only node of Nw(v) with neighbors in V(P) \ {s*, s, t, t*} then,
by Claim 4, node s satisfies Property (a) and, therefore, vj must also be an
endnode of the sector containing s*. In other words, s" and t belong to
adjacent sectors. Let H be the hole formed by P and the s't*-subpath of W
which does not contain v, . Then (H,v) is an odd wheel.

So there must be a second node of W, say v, $: vj, with neighbors in
V(P) \ {s*,s,t,t*}. Let w be the neighbor of v, in P which is the closest to
t* and let Q be the wt*-subpath of P. Let w" be the neighbor of vj closest
to w in Q, and let Q" be the wun'-subpath of Q. Let P be the viv,-subpath
of W which does not contain t*. Let P2 be the vit*-subpath of W which does
not contain v.. Finally, define the holes H1 and H2 as follows. H1 is formed
by P1, Q* and the edges wv,, ?' ,j. H2 is formed by P2, Q and the edge wv i .
One of the holes H1 , H2 contains an odd number of neighbors of v and, if vi
is not an endnode of the sector containing t*, the number of neighbors of v is
greater than one in each of tie holes H, and H2. So, either (Hi, v) or (H 2 , v)
is an odd wheel. So v, = vJ-I.

If s satisfies Property (a), then the same argument shows that vj- 1 and
vj are also the endnodes of the sector containing s', a contradiction to the
fact that s* and t" are in different sectors. If s satisfies Property (c), then,
by Claim 4, v,.. and v, are the endnodes of a green sector, a contradiction
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to the fact that the sector containing t* is painted blue. Hence the claim
follows and the proof of Theorem 3.1 is now complete. 03
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